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1 Introduction

Ecological resources are often managed on the basis of outputs derived frommodels of
species‐environment relationships, variously referred to as: habitat suitability models,
species distribution models, resource selection functions, or ecological niche models.
Therefore, evaluating the predictive ability of such models is a necessary prerequisite
for robust decision‐making. While such evaluations are ideally based on independent
data collected purely for the purpose of model testing, in ecological studies fully inde‐
pendent data is often unavailable due to logistical or financial constraints. Therefore,
statistical resampling methods are the most important tool we have for evaluating pre‐
dictive ability.

To briefly summarise, resampling methods repeatedly resample the full dataset to cre‐
ate training and testing data subsets that are independent of one another. The model is
then iteratively fit using each training data subset and prediction error estimated using
the independent testing data subset. An overall estimate of prediction error is then cal‐
culated as the average prediction error across all resampled data subsets. While resam‐
pling methods are not a replacement for independent data, they can be used to conduct
an internal evaluation that penalises for optimism from overfitting1.

In their seminal paper on model evaluation Fielding and Bell2 state with reference to
resampling methods “The ecological literature seems to have paid little attention to
how the partitioning method can influence the error rates. Verbyla and Litvaitis briefly
reviewed a range of partitioning methods in their assessment of resampling methods
for evaluating classification accuracy.” The work of Verbyla and Litvaitis1 remains the
only comparison of resampling methods for evaluating species‐environment relation‐
shipmodels. Therefore, given the importance of this work, we endeavoured to replicate
the study using an open computational approach.

2 Prediction error

Whendeveloping a species‐environment relationshipmodel, wewill usually have adataset
d that contains observations or measurements that form a species response variable
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y and a set of one or more environmental explanatory variables x. Using a species‐
environment relationship model function f trained on the dataset f (d) a prediction of
the response variable ŷ can be created from the environmental explanatory variables
for each sample i:

ŷi = f (d)(xi) (1)

We can then define the prediction errorErr for each sample i as the absolute difference
between the observed response variable yi and predicted response variable ŷi:

Erri = |yi − ŷi| (2)

This definition ofErr is equivalent to the binarymisclassification error rate used by Ver‐
byla and Litvaitis1, as when yi = ŷ then Erri = 0, and when yi ̸= ŷ then Erri = 1. But
by expressing Err in these terms generalises the approach to situations in which the
species‐environment relationships are measured or modelled on a continuous rather
than binary scale, which has become more common practice since the original compu‐
tational experiment was conducted.

3 Resampling methods

During the replication process it became apparent that the terminology for resampling
methods has developed over time, and has been used somewhat inconsistently. There‐
fore, we begin by naming and formally defining each of the resampling methods we
have used based on descriptions within the references.

3.1 Resubstitution
Given a dataset d of size n the resubstitution method calculates the mean prediction
error across all samples i from a modelling function trained on the entire dataset f (d).

ErrR =
1

n

n∑
i=1

|yi − f (d)(xi)| (3)

The value ErrR is called the resubstitution (or apparent) error rate and is likely to pro‐
vide an optimistic estimate of prediction error, as the same data is used to train and test
the model.

3.2 Hold-out cross-validation
Hold‐out (or: split‐sample, randomised, Monte Carlo) cross‐validation randomly parti‐
tions the dataset into training and testing subsets. Verbyla and Litvaitis1 referred to this
approach as simply “cross‐validation” but we have chosen to use the more specific term
of hold‐out cross‐validation to clarify which of the many types of cross‐validation we
are referring to. The proportion p of data ‘held‐out’ from the dataset d forms a testing
dataset t of sample size ♯t, with the remaining data forming training dataset {d−t}. The
model is fitted using the training dataset f ({d−t}), and the prediction error is estimated
as the mean prediction error for all i in t across a number ofH repetitions.

ErrHp =
1

H

H∑
t=1

1

♯t

∑
i∈t

|yi − f ({d−t})(xi)| (4)

In general this method can be considered an improvement over resubstitution as the
data used to train the model is separated from the data used to test the model.
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3.3 K-fold cross-validation

Verbyla and Litvaitis1 describe a resamplingmethod called ten‐fold cross‐validation and
another method called n‐fold cross‐validation or the jackknife. Both these methods are
variations ofK‐fold cross‐validation. TheK‐fold cross‐validationmethod begins by ran‐
domly partitioning the dataset into k equally sized sets. Then the prediction for each
sample i is calculated from a model fitted to the set {d− k : i ∈ k}, which is the dataset
d excluding the set k where k includes i.

ErrK =
1

n

n∑
i=1

|yi − f ({d−k:i∈k})(xi)| (5)

When k = n then we produce a special form of K‐fold cross‐validation called the jack‐
knife (or: leave‐one‐out, n‐fold) cross‐validation.

3.4 Bootstrap cross-validation

Bootstrapping3 is based upon a set B of bootstrap sample datasets b, for which b is of
size n and is generated by randomly sampling with replacement from the full dataset d.
The model is iteratively fitted to each b and prediction errors calculated for all samples i
in the test set {d− b} that consists of the dataset d with all the i in the bootstrap sample
b removed. This results in around 0.632 of the dataset d occurring at least once in the
training set b, and the remaining 0.368 of d occurring in testing set4. The estimated
prediction error rate is then the mean prediction error across all bootstrap samples5,6.

ErrB =

B∑
b=1

∑
i∈{d−b}

|yi − f (b)(xi)|

B∑
b=1

♯{d− b}
(6)

It is worth noting in the context of a replication study that the equation used to calculate
ErrB was later changed, as this caused some confusion during our replication. The
second equation7works through each sample i, and calculates themeanprediction error
for a set Ci of size ♯Ci that is equal to the all bootstrap samples that do not contain i,
Ci = {b ∈ B : i /∈ b}.

ErrB =
1

n

n∑
i=1

1

♯Ci

∑
b∈Ci

|yi − f (b)(xi)| (7)

This second definition was later termed the ‘leave‐one‐out bootstrap’ where it was also
noted by Efron8 that these “two definitions agree as B → ∞ and produced nearly the
same results in our simulations” which were based onB = 50. Although the later defin‐
tion of ErrB has become more commonly used4, as the two methods produce nearly
identical results, we have used the original definition (Equation 6) in our replication as
it is simpler to compute, and was the version used by Verbyla and Litvaitis1 that we are
trying to replicate.

4 Computational experiment replication

Verbyla and Litvaitis1 based their computational experiment on applying linear discrim‐
inant analysismodels to a randomdataset. Their premise was that by creating a random
dataset the predictive ability of a model should be no better than chance, and hence as
the true prediction error was known exactly each resampling method could be assessed
for bias and precision.

ReScience C 5.1 (#4) – Etherington and Lieske 2019 3

https://rescience.github.io/


[Re] Resampling methods for evaluating classification accuracy of wildlife habitat models

4.1 Random datasets
Each of 1000 computational experiments began by creating a random dataset. The re‐
sponse variable consisted of 30 observations that were randomly assigned a presence
= 1 or absence = 0 value. These 30 observations were then matched with 10 explana‐
tory variables. Verbyla and Litvaitis1 state that the “ten predictor variables were gener‐
ated with univariate normal distributions and equal variances” but neither the mean
nor variance used was reported. Therefore, we assumed a standard normal distribution
of µ = 0 and σ = 1. For each random dataset a linear discriminant analysis model was
fitted and prediction error calculated using each resampling method.

4.2 Resubstitution
The resubstitution method is the simplest approach and the most consistently reported
in the literature, therefore we applied the methodology exactly as described.

4.3 K-fold cross-validation)
We conducted K‐fold cross‐validation with K = 10 and K = n as in Verbyla and Lit‐
vaitis1 – remembering that K = n is equivalent to the jackknife method. We also in‐
cluded K = 3 as this represents a situation with a similar proportion of the dataset
forming training and testing sets as with the bootstrap. This was done to assess if the
proportion of data within training and testing sets was affecting comparisons of the re‐
sampling methods.

4.4 Bootstrap cross-validation
The bootstrap method was applied with bootstrap samples B = 200 as specified in the
example code provided by Verbyla and Litvaitis1.

4.5 Hold-out cross-validation

We included three cases of hold‐out cross‐validation aswhileVerbyla andLitvaitis1 stated
that for this method the “the estimate of model classification accuracy will not be very
precise” no experiments or citations were provided to support this claim. In addition
we felt there was some inconsistency in the two citations given with reference to this
method. While Verbyla and Litvaitis1 state “only one estimate of accuracy is made”
which matches the citation9 using hold‐out cross‐validation with H = 1, a second ci‐
tation10 referred to hold‐out cross‐validation with H = 10. Given this uncertainty we
explored three different versions of hold‐out cross‐validation. We used p = 0.368 twice
to match the proportion of test data in the bootstrap approach, and withH = 1 for one
method, andH = 200 in the secondmethod for consistency with the bootstrap. We also
usedH = 200 with p = 0.200 to examine sensitivity to the test data proportion.

5 Results

The results for each resampling method were presented by Verbyla and Litvaitis1 as a
“smoothed frequency distribution” but the smoothingmethodwas not reported. As their
results appeared to be normally distributed, to mimic the original results to aid compar‐
isonsweproducedour smootheddistributionsusing a one‐dimensionalGaussian kernel
density estimator with a bandwidth of one (Figure 1).

Looking at the distribution of Err across the 1000 computational experiments, the re‐
substitutionmethod produced clearly biased estimates of prediction error. All the other
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Figure 1. Smoothed distributions of estimates of prediction error for various resampling methods
from 1000 computational experiments with the known prediction error of 0.5 also marked.

methods produced unbiased estimates, but there was notable variation in the precision
of those estimates, with ErrB=200 (µ = 0.497, σ = 0.069) producing the most precise
estimates.

6 Conclusion

While a lack of method description means our implementation will be different to that
of Verbyla and Litvaitis1, we would conclude that our results are sufficiently similar to
have replicated their computational experiments.

Our findings confirm that resubstitution is a biased estimate of prediction error, and
that bootstrap cross‐validation produces the most precise unbiased estimate. We also
found that hold‐out cross‐validation produced unbiased but highly variable estimates
of Err as the method is clearly sensitive to the choice of parameters. We found little
difference between any of theK‐fold cross‐validation methods.

Given the findings from our replication, we would support Verbyla and Litvaitis1 in ad‐
vocating the use of the bootstrap, as it produced the most precise estimate, and unlike
other resampling methods it does not require a arbitrary choice of dataset partitions or
splits that could confound inter‐study comparisons of model evaluations.

We conclude that while not a substitute for truly independent data, resampling meth‐
ods should be considered an important part of species‐environment relationship model
evaluation, and would encourage the use of the bootstrap cross‐validation method in
particular.
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